Efficient algorithms for bipartite matching problems with preferences
نویسنده
چکیده
Matching problems involve a set of participants, where each participant has a capacity and a subset of the participants rank a subset of the others in order of preference (strictly or with ties). Matching problems are motivated in practice by large-scale applications, such as automated matching schemes, which assign participants together based on their preferences over one another. This thesis focuses on bipartite matching problems in which there are two disjoint sets of participants (such as medical students and hospitals). We present a range of efficient algorithms for finding various types of optimal matchings in the context of these problems. Our optimality criteria involve a diverse range of concepts that are alternatives to classical stability. Examples include so-called popular and Pareto optimal matchings, and also matchings that are optimal with respect to their profile (the number of participants obtaining their first choice, second choice and so on). The first optimality criterion that we study is the notion of a Pareto optimal matching, a criterion that economists regard as a fundamental property to be satisfied by an optimal matching. We present the first algorithmic results on Pareto optimality for the Capacitated House Allocation problem (CHA), which is a many-to-one variant of the classical House Allocation problem, as well as for the Hospitals-Residents problem (HR), a generalisation of the classical Stable Marriage problem. For each of these problems, we obtain a characterisation of Pareto optimal matchings, and then use this to obtain a polynomial-time algorithm for finding a maximum Pareto optimal matching. The next optimality criterion that we study is the notion of a popular matching. We study popular matchings in CHA and present a polynomial-time algorithm for finding a maximum popular matching or reporting that none exists, given any instance of CHA. We extend our findings to the case in CHA where preferences may contain ties (CHAT) by proving the extension of a well-known result in matching theory to the capacitated bipartite graph case, and using this to obtain a polynomial-time algorithm for finding a maximum popular matching, or reporting that none exists. We next study popular matchings in the Weighted Capacitated House Allocation problem (WCHA), which is a variant of CHA where the agents have weights assigned to them. We identify a structure in the underlying graph of the problem that singles out those edges that cannot belong to a popular matching. We then use this to construct a polynomialtime algorithm for finding a maximum popular matching or reporting that none exists, for
منابع مشابه
Solving a nurse rostering problem considering nurses preferences by graph theory approach
Nurse Rostering Problem (NRP) or the Nurse Scheduling Problem (NSP) is a complex scheduling problem that affects hospital personnel on a daily basis all over the world and is known to be NP-hard.The problem is to decide which members of a team of nurses should be on duty at any time, during a rostering period of, typically, one month.It is very important to efficiently utilize time and effort, ...
متن کاملSemi-matchings for Bipartite Graphs and Load Balancing
We consider the problem of fairly matching the left-hand vertices of a bipartite graph to the right-hand vertices. We refer to this problem as the optimal semimatching problem; it is a relaxation of the known bipartite matching problem. We present a way to evaluate the quality of a given semi-matching and show that, under this measure, an optimal semi-matching balances the load on the right han...
متن کاملPractical and theoretical improvements for bipartite matching using the pseudoflow algorithm
We show that the pseudoflow algorithm for maximum flow is particularly efficient for the bipartite matching problem both in theory and in practice. We develop several implementations of the pseudoflow algorithm for bipartite matching, and compare them over a wide set of benchmark instances to state-ofthe-art implementations of push-relabel and augmenting path algorithms that are specifically de...
متن کاملAlgebraic Algorithms for Matching and Matroid Problems
We present new algebraic approaches for several well-known combinatorial problems, including non-bipartite matching, matroid intersection, and some of their generalizations. Our work yields new randomized algorithms that are the most efficient known. For non-bipartite matching, we obtain a simple, purely algebraic algorithm with running time O(n) where n is the number of vertices and ω is the m...
متن کاملPopular Matchings in the Marriage and Roommates Problems
Popular matchings have recently been a subject of study in the context of the so-called House Allocation Problem, where the objective is to match applicants to houses over which the applicants have preferences. A matching M is called popular if there is no other matching M ′ with the property that more applicants prefer their allocation in M ′ to their allocation in M . In this paper we study p...
متن کامل